
www.manaraa.com

CS-95-25�Text / Relational Database Management Systems:Overview and Proposed SQL ExtensionsyG. E. Blake, M. P. Consens, I. J. Davis, P. Kilpel�ainenE. Kuikka, P.-�A. Larson, T. Snider, and F. W. TompaUW Centre for the New OED and Text Research,Department of Computer Science,University of Waterloo,Waterloo, Ontario,Canada N2L 3G1June 1995AbstractCombined text and relational database support is increasingly recognized as an emergingneed of industry, spanning applications requiring text �elds as parts of their data (e.g., forcustomer support) to those augmenting primary text resources by conventional relational data(e.g., for publication control). In this paper, we propose extensions to SQL2 that provide
exible and e�cient access to structured text described by SGML or other encodings. We alsopropose an architecture to support a text/relational database management system as a federateddatabase environment, where component databases are accessed via \agents": SQL agents thattranslate standard or extended SQL2 queries into vendor-speci�c dialects, and text agents thatprocess text sub-queries on full-text search engines.
�Also available via anonymous ftp from site cs-archive.uwaterloo.ca, directory cs-archive/CS-95-25, �leCS-95-25.ps.Z; and via the World Wide Web from page http://bluebox.uwaterloo.ca/OED/trdbms.html.ySupercedes earlier version published in Proceedings of the ADB'94 Conference.

www.manaraa.com

1 IntroductionThe application of database technology is seen as essential to the operation of a conventionalbusiness enterprise. However, there is a universe of business information, namely text, which iscurrently stored, accessed, and manipulated in an ad hoc fashion with none of the consistencyand discipline of the database approach. Environments supporting both text and relational dataare implemented through application programs within which separate repositories are accessedexplicitly. Not only is this inconvenient for application programmers, but the disjointness of thedata impedes data administrators' e�orts to ensure data consistency. Furthermore, the di�culttask of query optimization becomes the burden of every application programmer and the bene�tsof database transparency are impossible to realize. Ongoing work has laid the foundations necessaryfor building an alternative to this disorder and lost potential.The objective of the research is to design and implement a multidatabase system supportingtext and relational data (T/RDBMS) that will better address the needs of these enterprises. Westart with the requirement that the application program interface must be an extension of bothSQL2, the industry standard for relational data [ISO90, ISO92], and SGML, the industry standardfor structured text [Gol90, ISO86].The T/RDBMS can be built as a federated database system with the actual data stored andmanaged by standard (relational and text) data management systems, which serve as componentdatabase systems for a hybrid query processor (Figure 1).
������ ZZZZZZ

Applicationinterface CatalogSQL agentDB systemConventional Text agentFull-textsystemSGML layerRegions layer
Parser & optimizerIntegration engine

Figure 1. Federated Database System1

www.manaraa.com

Queries expressed in terms of the external data model are parsed, and the relational and textcomponents identi�ed. Query strategies can then be analyzed so that an e�cient access plan canbe identi�ed. This plan can subsequently be executed under the control of an integration engine,which distributes parts of the query task to component database systems as needed, and integratesthe results before they are returned to the application.The call-level interface between applications and the hybrid query processor, and between theintegration engine and the underlying agents will be based on Microsoft's Open Database Connec-tivity (ODBC) speci�cation [Mic92].Several approaches to text management have been proposed. Customized document storagemanagement systems, including text-speci�c access languages, have been implemented on top ofcommercial relational database systems (see, for example, [Wei85, Mar91]) or as stand-alone sys-tems (see, for example, [Gon87, Mac92]); these systems are incapable of simultaneously supportingconventional data. Alternatively, text storage has been provided by conventional systems, wherelong data �elds are used for binary large objects or \blobs" [Bil92], but operators to supporttext manipulation have not usually been provided and these systems do not support SGML-likestructured text.At least three systems have been proposed within which structured text can be fragmented intorelational �elds and SQL queries can be applied against the resulting text sub�elds in conjunctionwith record-oriented data. The Air Transport Association has proposed the Structured Full-textQuery Language (SFQL) as an extension to SQL incorporating SGML-based formatted text types[ATA91]. More recently, Oracle Corporation's SQL*TextRetrieval Version 2 provides a text retrievalproduct, supported by inverted indexing and a thesaurus capability, to be used in conjunctionwith the Oracle DBMS [Ora92]. Similarly, IDI's BASISplus supports structured full-text retrievalin conjunction with relational database functionality [Sey92]. Although each system provides amechanism to assemble larger text units from the constituents, this is not provided within SQL.Thus, for example, such larger units cannot be presented as �elds within an SQL view.In order to maintain structured text in a single relational �eld, researchers at Australia's Col-laborative Information Technology Research Institute have designed and implemented a nestedrelational database system (Atlas) and an extended SQL language to provide text support [Sac92].Similarly there is a recent proposal to extend an object-oriented SQL dialect to support SGMLdocuments [Chr94].In both of the above approaches, the relational model has been extended to encompass struc-tured data of arbitrary type, and subsequently structured text has been supported as a specialcase. We instead wish to explore a direct extension of SQL2 to support structured text in the hopethat our proposals will suit text, and particularly SGML applications, more closely.The SQL Multimedia and Application Packages (SQL/MM) project has a particular interest inde�ning abstract data types which would provide support for Full-Text within SQL3 [ISO94]. Thisis also our objective.2 Example Text DatabaseTo illustrate our proposed text extensions to SQL2, we will use a simpli�ed version of a databasemanagement system required for an encyclopedia, and describe our extensions in terms of this2

www.manaraa.com

Encyclopediaaid title cid req date req wc due date article biblioexample.Such a database requires management of both administrative records and text. Informationabout contributors and their articles, including tracking the development of the articles, must bemaintained. In addition text management involves key-word generation, cross-reference mainte-nance, maintaining consistency of style, and maintaining consistency of bibliographic data.Standard SQL2 queries against this database are to be supported, to extract contributor ad-dresses in order to generate address labels or to extract information about articles having duedates in a given time range, and to check information about payments to contributors. In addition,queries are to be expected against the bibliographic data using a variety of criteria based on au-thors, dates, and number of citations. Similarly, queries posed against the content of articles mustbe supported.The articles themselves contain primarily prose text, but consider the form of the bibliography.Bibliographic data can be presented in a list format, a prose format or a combination of thesetwo. For example, the bibliography for the article entitled \Canada, History of" in The NewEncyclop�dia Britannica | Macropaedia Vol. 3, p. 751, reads:W.L. MORTON, The Kingdom of Canada, 2nd ed. (1969), is the fullest one-volume historyand the most traditional.... To understand the place of the colonies that became Canada in theBritish Empire, the following are most useful: H.A. INNIS, The Fur Trade in Canada, 2nd ed.(1956), and The Code Fisheries, rev. ed. (1954);... The following works both introduce andanalyze the development of the remaining British colonies to self-governing communities andtheir union in confederation. W.S. MacNUTT combines in a single narrative the histories ofthe Atlantic provinces in The Atlantic Provinces, the Emergence of Colonial Society, 1712-1857(1965). FERNAND OUELLET in his Histoire �economique et sociale du Qu�ebec, 1760-1850(1966; Eng. trans. in prep.), applies with great success the demographic method of Frenchhistoriography to the little known domestic development of that province....A requirement for this database is that we must be able to retrieve the articles and bibliographiesin their text form as crafted by the encyclopedia's contributors and editors. Thus, for example, wemust be able to deal with the bibliography as a single structured textual unit and yet identify orextract individual authors or citations as structured texts.To illustrate our proposed language extensions, we will de�ne one simplistic table with thefollowing schema, where aid is the article identi�cation, title is the proposed article title, cid is thecontributor identi�cation, req date is the date the article was solicited from the author, req wc isthe requested word count for the article, due date is the requested date for the article's completion,article is the text of the completed article, and biblio is the accompanying bibliography.For the sake of brevity and clarity, we will describe constructs in the DDL and DML in terms ofthis example. 3

www.manaraa.com

3 Data De�nition LanguageIt is assumed for the present that a default data source has been established to manage standardrelational columns, and that a potentially di�erent data source has been established to managetext. The location, name, and classi�cation of all legitimate data sources will be de�ned by thedatabase administrator, using vendor speci�c DBA commands.If the hybrid query processor supports a SQL2 information schema (which is not a requirementfor conforming entry level SQL), then views may be added to the information schema so thatinformation about available data sources can be retrieved.To create the proposed relational table containing both text and other types of relational valuesthe following command is issued to the hybrid query processor.CREATE TABLE Encyclopedia (aid INTEGER,title VARCHAR(100),cid INTEGER,req date DATE,req wc INTEGER,due date DATE,article TEXT,biblio TEXT,PRIMARY KEY (aid))This statement de�nes a table called Encyclopedia with eight columns. In general the abovecolumns may be created on many di�erent database engines. The above DDL therefore needs toallow explicit speci�cation of the catalog (and schema) which is to manage each column. Explicitlynamed catalogs must be known to the hybrid query processor. The detailed speci�cation of how acolumn within a federated table is to be created may also provide instructions about the physicallocation, management, or space requirements associated with this column. Since these instructionsare speci�c to underlying data sources, they are transmitted to the data sources unaltered, and areveri�ed for validity by these underlying data sources.For example, if we wished to create a federated table distributed across four underlying datasources named source1, source2, source3 and source4, the above command could be quali�edas shown below. The parameters associated with source1 are typical options which a relationaldatabase might accept, while those associated with source3 are typical options which a text enginemight accept.CREATE TABLE Encyclopedia (aid INTEGER,title VARCHAR(100) on source1(tablespace development pctfree 10),cid INTEGER on source2,req date DATE on source2,req wc INTEGER on source2 ,due date DATE on source2, 4

www.manaraa.com

article TEXT on source3(nolocking stopfile common words),biblio TEXT on source4,PRIMARY KEY (aid))In the above example the primary key is an INTEGER column. This primary key will typi-cally be stored as a column within all of the underlying source databases involved in support therepresentation of this table.The article and biblio �elds are of a new data type TEXT. Fields of this type contain structuredtext whose instances (ie. text values) have an associated GRAMMAR describing the structure ofthis text.Queries involving this new TEXT data type may extract the grammar associated with anyinstance of structured text. This grammar when extracted (and thus disassociated from the text)is a value of type GRAMMAR. GRAMMAR values might themselves be represented using thedata model for text, thus potentially allowing common operations to be de�ned for both TEXTand GRAMMAR. The GRAMMAR data type must be capable of e�ectively describing relevantinformation within an arbitrary SGML grammar. It may be capable of representing a much largerclass of grammars, encoded using many di�erent standards.The following SGML Document Type Declarations (DTDs) describe the grammar of article andbiblio TEXT �elds in our example. Note that the article may consist of a cross reference to anotherarticle or may itself be a complete article. The body of the article is followed by some keywordsand some summary information that contains data such as birth place and dates of the article'ssubject, as appropriate. The bibliography allows free text to be intermingled with bibliographic�elds as desired.<! DOCTYPE article information [<! ELEMENT article information - - (detailed article|xref)><! ELEMENT xref O O ("see", article title)><! ELEMENT detailed article O O (header,paragraph+,keyword*,summary)><! ELEMENT header - - (title,author+)><! ELEMENT summary - - (birth|death|parent|occupation|child)*><! ELEMENT (title,author,keyword,paragraph,article title) - - PCDATA><! ELEMENT (birth,death,parent,occupation,child) - - PCDATA>]><! DOCTYPE biblio information [<! ELEMENT biblio information - - (citations)><! ELEMENT citations O O (citation, (";" | "."))+><! ELEMENT citation - - (author|ref|date|free text)+><! ELEMENT ref O O ("in"?,work,edition?) ><! ELEMENT date - - ("(", PCDATA , ")")><! ELEMENT (author,work,edition) - - PCDATA><! ELEMENT free text O O PCDATA>]> 5

www.manaraa.com

Since we wish to constrain the text in both of the TEXT columns of the Encyclopedia table sothat they are required to use the above grammars, the appropriate constraints will now be placed onthese TEXT columns. This could alternatively have been done in the CREATE TABLE statementshown above, if desired. These constraints can later be revised as necessary by repeated use of theALTER TABLE command.ALTER TABLE Encyclopedia (ADD CONSTRAINT C1 CHECK(text_to_grammar(article) =text_to_grammar(string_to_text('<! ENTITY %example SYSTEM "/dtd/article"> %example;')))ADD CONSTRAINT C2 CHECK(text_to_grammar(biblio) =text_to_grammar(string_to_text('<! ENTITY %example SYSTEM "/dtd/biblio"> %example;')))) In the above example the DTD for article information is assumed to be stored in the �le named\/dtd/article", and the DTD for biblio information is assumed to be stored in the �le named\/dtd/biblio". Path names can, if necessary, be extended to identify the machines on which these�les resided. The functions \string to text" and \text to grammar" are de�ned as part of the DML(section 4.1).Other approaches to managing the grammars that may be associated with TEXT columnsare equally valid. The database administrator may wish to establish a table containing (as twocolumns) a grammar and an associated key for this grammar. Having done so the constraint onarticles described above might be replaced with the join constraint that the grammar associatedwith articles must match a named grammar in this table of supported grammars.Alternatively it might be decided to partition text into those which used common grammarsby de�ning domains such as the one shown below. TEXT columns which were constrained to havethe article grammar would then be de�ned to be of type ARTICLE TEXT.CREATE DOMAIN article_text TEXTCONSTRAINT C1 CHECK(text_to_grammar(VALUE) IN(SELECT grammar FROM named_grammarsWHERE name = 'article'))More generally TEXT columns may have multiple permissible grammars associated with themwhen this is appropriate, by either extending the constraints on these columns, or the domains6

www.manaraa.com

used to de�ne the types of these columns. This allows families of text having related grammars tobe stored in a relational column of type TEXT. In the most general cases no constraints will beimposed on the TEXT contained in a relational column.The constraints shown above can also be re�ned so that they require that the TEXT associatedwith tuples containing speci�c values have speci�c grammars. For example, if we anticipated thateach article provided by a speci�c contributor would have a grammar earlier provided by thatcontributor, the constraint below might be used to enforce this assertion.ALTER TABLE Encyclopedia (DROP CONSTRAINT C1)ALTER TABLE Encyclopedia (ADD CONSTRAINT C1 CHECK(text_to_grammar(article) =(SELECT grammar FROM contributor_grammarsWHERE cid = contributor_grammars.id))The creation of constraints (and domains which depend on such constraints) requires some carein a federated environment. In the simple cases, where all of the components mentioned withina constraint are managed by a common underlying data source, it will be the responsibility ofthat data source to enforce this constraint. However, when constraints apply across underlyingdatabases, the federated engine must assume the responsibility for enforcing them.In order to facilitate rapid retrieval of tuples when queries involve text, we may wish to com-municate to underlying database engines that speci�c indices should be associated with relationalcolumns containing TEXT or other types of data. There is no direction provided in the SQL2standard as to how this should be done, since it was anticipated in that standard that individualvendors would wish to use many di�erent type of indices.Although many database engines support composite indices spanning many columns within atable, supporting such composite indices in a federated environment is problematical since columnswithin a single table may be managed by di�erent database engines. We will therefore only allowcomposite indices to be created on underlying data sources, when all components of a compositeindex are managed by a single data source.If we again assume that the article and biblio columns in the Encyclopedia relation are man-aged by a single data source, we might create an index on these columns by issuing the followingstatement:CREATE INDEX search index ON Encyclopedia(article, biblio)[<Server specific instructions>]Additional instructions about how these indices are to be created or used may be appended tothis statement. The syntax (and interpretation) of such instructions are data source speci�c. Theseinstructions will be forwarded to the underlying data source without alteration, and it will be theresponsibility of the underlying data source to validate them. In the above example the underlyingdata source will also determine if the ordering of items indexed is signi�cant.Applications connected to the hybrid query processor may use the HQP as a gateway to directlyconnect to underlying data sources by using the SQL2 CONNECT, SET CONNECTION and DIS-CONNECT statements. All communication involved in supporting such subordinate connections7

www.manaraa.com

is performed transparently by the hybrid query processor. Cascaded connections are with respectto the current connection.Each user of the hybrid query processor may have zero or more accounts on each underlyingdatabase. Users who wish the hybrid query processor to access tables independently created on anunderlying data source, must �rst establish how the hybrid query processor is to access this datasource. This is done by using the ATTACH USER command:ATTACH USER name ON server [USING userid [PASSWORD passwd]]The ATTACH USER command creates a permanent mapping (which may subsequently bealtered or dropped) between the invoking user, and a named set of values which allow the hybridquery processor to connect (using the userid and password if speci�ed) to the indicated server.Independent tables within underlying data sources, for which the invoking user has one or moreattachments, may be integrated (as views) with tables created and managed by the hybrid queryprocessor. This is done by using the ATTACH TABLE command, shown below.ATTACH TABLE table_name FOR name [AS new_table_name]The ATTACH TABLE command creates a permanent view (within the invoking user's schema)of the speci�ed table, which is to be accessed by the earlier de�ned user attachment name. Thename of this view defaults to that of the underlying table. The method of accessing tables associatedwith a given user attachment changes whenever that user attachment is altered. This facilitatessuch common administrative functions as changing userids, passwords, etc. When the structure ofan attached table is changed, all attachments to this table must be dropped.We may want to extract certain sub�elds of TEXT columns in order to de�ne a view. Whilesuch views may be dependent on DML extensions and semantics as described in the next section,the creation of such views involves no new concepts. Consider, for example,CREATE VIEW cited_auths AS(SELECT aid, title, count_marks(mark_subtexts(biblio,'<author>#'))as number_authorsFROM Encyclopedia)which de�nes a three column table containing the article's identi�cation, title and a count of theauthors cited within the bibliography.Other DDL operations such as ALTER and DROP for tables, domains, indices and views existbut for brevity are not discussed here, since they conform to standard SQL2.In summary, the CREATE TABLE statement has been extended so that a virtual federated tablemay be constructed, and accepts two new data types for a column, namely TEXT and GRAMMAR.Indices for TEXT are proposed, and control statements for merging components of the federateddatabase system are provided. Unlike previous proposals, the TEXT and GRAMMAR types refer tostructured searchable text, with an associated grammar. To comply with emerging text standards,we assume that grammars are consistent with those supported by SGML. Elements of the grammarwill be available to be used in a query to re�ne a text search or to recover information about thegrammar itself. 8

www.manaraa.com

4 Data Manipulation LanguageIn our attempts to combine the concepts of text and relational databases, we have taken theapproach that the text is embedded in relations rather than the other way around. Thus in ourDDL we allow a �eld (column) in a relation to be of type TEXT (i.e., structured text). In theDML we continue on this course: operations are typically applied to one structured �eld at a time.Previous authors have proposed extensions to traditional SQL operators to include operationson unstructured TEXT �elds, encoded as character strings. In particular concatenation, stringfunctions, and pattern matching predicates such as LIKE and CONTAINS have been supported[ATA91, Ora92, Sac92]. We include traditional SQL operators with these extensions in our design.In this section we further extend SQL2 by describing operators on the two new data types, TEXTand GRAMMAR, and propose new SQL functions that allow these data types to be manipulated.For the purposes of the DML, an instance of a structured TEXT �eld is logically represented bya tree, together with a (possibly empty) set of subtexts marked for subsequent processing. Everynode in this tree has an associated string value. The structure of the nodes within the tree providesan internal representation for the structure of the TEXT. The value of the string associated witheach node may encode type information for that node as well as the data to be associated with thenode. Every instance of structured TEXT has an associated grammar. Two TEXT instances areunequal if they have di�erent values in any of their components.Grammars may be encoded using the same model proposed for encoding TEXT. If so theGRAMMAR data type will be constrained by a common external metagrammar, capable of de-scribing any grammar. Representing GRAMMAR using the same model proposed for encodingtext (but not necessarily the same encoding rules), would allow many of the operations performedon TEXT to be inherited by the data type GRAMMAR. Two GRAMMARS may be comparedfor equality, but GRAMMARS which de�ne a common language in distinguishable ways will betreated as unequal.4.1 Encoding of SGML documents as TEXT and GRAMMARIn the examples that follow we assume for simplicity that an arbitrary SGML document containsonly `genids', `attribute names', `attribute values' and #PCDATA, and the corresponding TEXTencodes a parse tree. The list of node types contained within a parse tree will be extended asnecessary, as our understanding of how to encode SGML documents as TEXT and GRAMMARevolves.Each `genid' start-tag end-tag pair within the text is translated into a genid node within ourdata model. Each attribute name, attribute value, and instance of #PCDATA within the text istranslated respectively into an attribute name node, attribute value node, and content node.Genid nodes contain as their immediate children any attribute name nodes associated withthese genid nodes, followed by any directly contained genid nodes or content nodes (in the orderconsistent with the text). Attribute name nodes have a single child which is the attribute valuenode. Attribute value nodes, and content nodes are always leaf nodes.Each type of node within the model has an associated string value. These string values may bematched against strings contained in patterns. Since the model provides only a conceptual repre-sentation for TEXT, there is no requirement that these string values be stored without modi�cation9

www.manaraa.com

by underlying text engines. Text retrieval engines may perform any appropriate operations whentranslating their conceptual understanding of structured text and the patterns matched againstthem, into the concrete operations needed to identify, mark or extract the speci�ed subtexts. Anysuch translation from virtual to concrete operations must of course be transparent to requestingapplications.Genid nodes have a string value that begins with a `<', continues with the genid name, andterminates with a `>'. Attribute names have a string value that contains this name preceded by a`:'. Attribute values have a string value that contains this value preceded by an `='. Content nodeshave a string value that begins with `"' continues with the value of this content, and is terminatedwith a matching `"'.As an example of the translation of an SGML encoded string into the proposed conceptualparsed data structure, consider the fragment:<section><para status=1stedition>This is some<emph author=smith font=bold>great</emph>text</para></section>Figure 2 shows the conceptual parse tree that forms part of the corresponding TEXT value. Apreorder traversal of the parse tree enumerates items in the order that they are �rst encounteredwhen performing a left to right scan of the text.4.2 Conversion functions for TEXT and GRAMMARIt is natural to assume that the existing SQL2 cast function is extended to include support forTEXT and GRAMMAR as a fundamental data type. However the casting mechanism providedby SQL2 assumes that no external information is required when one data type is cast into anotherand that there is a partial one-to-one mapping between data types. Neither of these assumptionsis true when constructing TEXT and GRAMMAR. It is therefore proposed that the new functionsdescribed below be supported.TEXT string to text(STRING s [,STRING parser])STRING text to string(TEXT t [,STRING method])GRAMMAR text to grammar(TEXT t)The `parser' parameter identi�es the parser used to perform the translation fromSTRING to TEXT,while the `method' parameter identi�es the desired translation from TEXT back into STRING.When converting a STRING into a TEXT the parser will expect input to conform to a speci�cstandard and will have knowledge of how it is to behave in converting this input into an internalinstance of TEXT conforming to the data model for TEXT. When converting a TEXT into a10

www.manaraa.com

QQQQQQQQ����������� ZZZZZZ������PPPPPPPPPPPPPPPPP������<section> "text"<para>:status "this is some"=1stedition "great"=smith <emph>=bold:font:authorFigure 2. An encoding for part of an instance of textSTRING the method (and potentially the internal encoding of the instance of text) determines thedesired format of the output string.The default STRING to TEXT parser is assumed to accept an SGML document as an inputstring and to produce a TEXT encoded as described in this paper as output. The default TEXTto STRING parser accepts an instance of TEXT encoded as described in this paper as input, andproduces a STRING containing the corresponding text as output. In addition, special markup maybe added to this output string to communicate the location of marked text within this textualcontent.The function `text to grammar' returns the internal GRAMMAR associated with an instanceof TEXT. This internal GRAMMAR describes (possibly by using a suitable encoding within thedata model for text) properties of the corresponding structured TEXT (as represented withinthe data model) which are deemed to be of relevance either to text engines or to applications.The TEXT to GRAMMAR translation will produce a GRAMMAR which includes a descriptionof the legitimate values associated with internal TEXT nodes, the allowable ancestor/descendentrelationships between these nodes, and the name of the parser used to encode these nodes.Unspeci�ed extensions may optionally be supported by text engines, if these engines wish toprovide additional vendor speci�c structural information about speci�c instances of TEXT.The computation of the internal GRAMMAR will be independent of the textual content con-tained within an external document. Thus for example, when two SGML documents having iden-tical DTD's and document declarations are converted to TEXT using the same parser, the internalGRAMMARs associated with these internal TEXTs will be identical.11

www.manaraa.com

If the functions described above are unable to convert their input into a valid instance of thedesired data type (be that TEXT, GRAMMAR, or STRING) then a suitable exception conditionis raised.A number of speci�c methods are envisioned to convert from TEXT (and potentially GRAM-MAR) to STRING, primarily so that e�ective string comparisons may be performed against theresulting strings. These functions are not yet well de�ned but includeSTRING text to string(TEXT text1, 'root')STRING text to string(TEXT text1, 'clear')The `root' translation returns the string at the root node of the parse tree contained within `text1'.If `text1' is empty or null, then null is returned. The `clear' translation returns a string containingthe textual content associated with the given instance of TEXT. Within this string no markup ispresent.4.3 Searching and marking operations on TEXTIn order to use text e�ectively it must be possible to identify instances of TEXT that match certainpatterns. It must be possible to mark the subtexts within the TEXT which contain a given pattern.It must also be possible to count the number of marked subtexts within an instance of TEXT andto produce the union, intersection and di�erence of existing marked subtexts within otherwiseidentical text. Finally it must be possible to decompose a relational element of type TEXT intomarked subtexts, so that marked subtexts can be operated on directly by SQL, while still beingrelated with the point within the TEXT from which they were extracted.Six functions allow text to be searched and marked. Each of these functions returns NULL ifany of their inputs is NULL. These function are:BOOLEAN text match(TEXT text1, STRING pattern [, CHAR escape])TEXT mark subtexts(TEXT text1, STRING pattern [, CHAR escape])TEXT mark union(TEXT text1, TEXT text2)TEXT mark intersect(TEXT text1, TEXT text2)TEXT mark except(TEXT text1, TEXT text2)INTEGER count marks(TEXT text1)The text match() function returns true if and only if the text pattern (described further in Section4.4) can be matched (in at least one way) against some text tree contained within the input TEXT.Otherwise it returns false. To minimize the impact on the SQL2 and earlier standards (which donot support a boolean data type) the text match() function returns the integer 1 for true and 0 forfalse.An optional escape character may be used to escape any special meaning associated with speci�ccharacters contained within a pattern. The escaping mechanism is consistent with that used inSQL2 to escape characters within the pattern associated with the LIKE predicate. The defaultescape character is the backslash.Each of the functions mark subtexts(), mark union(), mark intersect(), and mark except() re-turn as their result a new text instance of type TEXT, which di�ers from `text1' (if at all) onlyin the marked subtexts that are contained within this new instance of text. The new resultinginstance of TEXT has the same parse tree and grammar as `text1'.12

www.manaraa.com

The function mark subtexts() marks a new set of subtexts within the text presented to it. Theappropriate subtexts are computed using the pattern presented to this function, as described inSection 4.4 below.The functions mark union(), mark intersect(), and mark except() require that text1 and text2di�er (if at all) only in their marked subtexts. When this is not the case the behaviour of thesefunctions is unde�ned. The function mark union() returns a new instance of text in which sub-texts are marked if and only if they were marked in either `text1', `text2', or both. The functionmark intersect() returns a new instance of text in which subtexts are marked if and only if theywere marked in both text1 and text2. The function mark except() returns a new instance of textin which subtexts are marked if and only if they were marked in `text1' but not in `text2'.The function count marks() returns as an integer the number of marked subtexts containedwithin the input TEXT. While the function text match() can be trivially implemented by applyingthe count marks() function to the mark subtexts() function, text match() is supported since it maypotentially be more e�cient.One higher level function is proposed, which can if desired be implemented using other functionsdescribed in this section.TEXT keep marks(TEXT text1, INTEGER start [,INTEGER count])The function keep marks() computes the ordering of the marked subtexts within a pre-ordertraversal of the parse tree. The �rst marked subtext is at position 1 within this ordering, and thelast marked subtext is at position `count marks(text1)' within this ordering. The mark associatedwith the n'th such marked subtext is preserved in the resulting text if and only if start � n <start + count. The count of the number of marked subtexts to be preserved defaults to 1.4.4 Pattern matching languageThe pattern matching language may be used to test for the presence of subtext values and to markselected subtexts. The design of the language is based on the assumption that a marked subtextmust correspond to a subtree associated with the TEXT value and can therefore be identi�ed bymarking the root node of that subtree.The structure of the pattern matching language has the following syntax.pattern := tree_path [`[' forest `]']forest := pattern [`,' forest]tree_path := rooted_rule [extended_path]extended_path := path_rule node_rule [extended_path]path_rule := `..' | `.'rooted_rule := [`^'] node_rulenode_rule := [`@'] string_pattern [`#']string_pattern := character [string_pattern]character := Any character subject to rules belowEach of the characters `.' , `[', `,', `]', `#', `@', and `^' must be escaped when they occur within astring pattern. The quote character (') must also be escaped, since pattern matching is expressed13

www.manaraa.com

using a (potentially quoted) SQL string. As a design principle, the symbols `A'-`Z', `a'-`z', `-', and `' were not chosen to represent pattern matching operators, so that they need not be escaped whenused to represent themselves in string matching.The pattern matching language has the following informal interpretation. Compare the treewhich represents the TEXT against the tree path. For each path from the root of this tree to somenode `X' which matches this tree path proceed as follows. If no forests are speci�ed consider a matchto have occurred. Otherwise, for each sequence of distinct child nodes of X which can be pairedwith each pattern within the forest (pairing nodes in left to right sibling order against patternsin left to right pattern order), attempt to match the subtrees rooted at these child nodes withtheir paired patterns. Consider a match to occur if and only if all such subtrees are simultaneouslymatchable with their patterns.The pattern matching rules have the following interpretation. If a node rule is preceded by a`^' only the root node in the tree being examined may satisfy this rule. If the root node does notsatisfy this rule then the match fails. If a node rule is not preceded by a `^' then any node at orunder the root node of the tree being examined may match this pattern.If a string pattern is preceded by an `@' then only marked nodes within the text being examinedmay satisfy this pattern; otherwise any node may match. Nodes may become marked as a resultof earlier or nested text operations.If a string pattern is followed by a `#' then the node compared with this pattern will be eligibleto be marked within the resulting text, assuming this comparison results (perhaps in conjunctionwith other comparisons) in a match.A string pattern matches a node (subject to all of the above additional constraints) if thestring associated with this node matches this pattern. The string pattern may use ` ' to indicatethe presence of an unknown character and `%' to indicate the presence of zero or more unknowncharacters. These two characters must be escaped if they are to be interpreted literally.The semantics for path rules can best be described by explaining how patterns which containsuch path rules can be translated into equivalent patterns which do not contain such path rules.The path rules `..' and `.' have equal precedence and are right associative. A..B[forest] is equivalentto A[B[forest]] and A.B[forest] is equivalent to A[^B[forest]]. If no forest is associated with B thenA..B is equivalent to A[B], and A.B is equivalent to A[^B]. Since the path rules are right associativeA.B..C is equivalent to A[^B[C]].Within the instance of SGML text in Figure 2, all paragraphs containing an emphasized occur-rence of the word great would thus be marked by using the pattern '<para>#..<emph>.."great"' .All sections containing such marked paragraphs could themselves subsequently be marked by using'<section>#..@%' , or if the marks on paragraphs were also to be preserved '<section>#..@%#'. Nothing in the above design precludes extensions to support alternative string pattern match-ing languages, better able to describe regular expressions, or patterns corresponding to SFQL'sCONTAINS predicate.4.5 Subtext extraction and aggregation operationsTwo functions allow text to be decomposed into related instances of subtext contained within aresulting relation, while one new set aggregation function allows aggregation of marks within the14

www.manaraa.com

resulting relations. These function are:RELATION isolate subtexts(TEXT text1)RELATION extract subtexts(TEXT text1, INTEGER columns,STRING pattern [, CHAR escape])TEXT aggregate marks(TEXT COLUMN text1)The function isolate subtexts() returns a two column relation having as many tuples as marks withinthe input TEXT. The �rst column contains TEXT having identical parse trees, and grammars to`text1'. Each instance of TEXT within this column has exactly one marked subtext, and everyinstance of TEXT within this column contains a distinct marked subtext. In each tuple withinthis relation, the second column contains a copy of the extracted subtext marked within the �rstcolumn. Within the second column, the root of this subtext is not marked, but all subordinatemarked subtexts remain marked.The function extract subtexts() generates a relation having the number of columns n de�ned bythe second parameter `columns'. This second parameter is constrained to be a literal so that it canbe evaluated at parse time. The string pattern must identify n� 1 nodes which are to be marked.The function generates one tuple per distinct pattern match. The �rst column contains the textwith the marked subtexts associated with this match. Subsequent columns contain extracted copiesof the marked subtexts rooted at the matched node. Within these subsequent columns the root ofthe subtext is not marked, but all subordinate marked subtexts remain marked. The columns arepopulated in the order (using a left to right scan of the pattern) in which the `#' symbol used torequest that these subtexts be marked (and thus extracted) occurred.The function aggregate marks() is a new set function which operates on a set of text instancesdrawn from di�erent tuples. As is the case with other aggregate operations, it may be appliedeither to every value produced by a TEXT value expression, or (when grouping is being performed)to instances of TEXT contained in separate sets of grouped tuples. It computes the result ofiteratively applying the function mark union() to every input TEXT within such a set. The resultfor any such input set is NULL if any of the TEXT within this input set is NULL.The relations returned by isolate subtexts() and extract subtexts() have no duplicate rows.Since the �rst column has no duplicated values, the values in this �rst column may serve as aprimary key for the relation.Functions (such as those described above) which convert instances of TEXT into relations needto be integrated in some way with SQL2. It is proposed that SQL2 be extended by allowingextract subtexts() and isolate subtexts() (and potentially other functions which return relations)to be used in any context where a subquery could occur, subject to the constraint that the scopingof any parameters associated with these functions is valid.We also propose an extension to the SELECT clause to include the keyword UNNEST. When-ever a SELECT clause has an UNNEST quali�er, subqueries occurring within the list of expressionsbeing projected by the SELECT clause may generate any type of value including values that arethemselves relations that have multiple rows and columns.The UNNEST operation is applied to the results projected by the SELECT as follows. For eachconventional value expression within the select list (which returns one atomic value per tuple) treat15

www.manaraa.com

this atomic value as a one row, one column relation. For each value expression which returns onerelation per tuple treat this result as a relation, but replace empty relations with a single row inwhich all �elds are null. Form tuples to be output by computing the cross product of each of theseresulting relations within the input tuple, taking care not to reorder any of the columns containedeither within the original select list or within those functions that return relations. New columnsresulting from functions that returned relations are unnamed.5 Examples of the Proposed DMLIn our example database we might want to:Mark all elements within articles which contain CANADA.SELECT mark_subtexts(article, '<%>#.."%CANADA%"')FROM EncyclopediaFind proposed titles and lengths of long articles on Canada.Using our DML the answer can be obtained with the querySELECT title, req_wcFROM EncyclopediaWHERE req_wc > 5000AND text_match(article,'<keyword>."%Canada%"') = 1As a more complex question, considerWho contributed articles for which the proposed titles do not match the titles includedin the article's body?With our extended SQL, we can formulate this query asSELECT cid,aidFROM (SELECT UNNEST cid, aid, title,extract_subtexts(article,2,'<title>#')FROM Encyclopedia) AS E(cid,aid,title,article,actual_title)WHERE title <> text_to_string(actual_title,'clear')As a matter of interest, note that if the title contains only alphabetic characters, blanks, andhyphens the WHERE clause could also have been written:WHERE count_marks(actual_title) > 0AND match_text(actual_title,'@%."' || title || '"') = 016

www.manaraa.com

In the above example there is an implicit assumption that each article will have at most one title.That assumption is consistent with the grammar earlier provided for articles. If more than onetitle was permitted within an article, then the following query might be better:SELECT cid, aidFROM Encyclopedia E1WHERE title NOT IN(SELECT text_to_string(title,'clear')FROM (SELECT UNNEST extract_subtexts(article,2,'<title>#')FROM Encyclopedia E2WHERE E2.aid = E1.aid) AS R(article,title))While the above queries can be viewed as constructing a derived table and then performing aselection on this derived table before projecting a �nal result, implementors may optimize thesequeries by recognizing that the only rows that must necessarily be returned from the Encyclopediaare those where title is not equal to the marked title. This optimization is conceptually similarto the types of optimizations already performed in most query processors, in order to use indicese�ectively.Our next examples explore how one would search text subelements that might appear in morethan one TEXT column, or be contained at di�erent points within a single TEXT column.Find the article identi�cation, title, contributor, and bibliography for entries where thebibliography has more than one citation but all are from the same author.SELECT aid, title, cid, biblioFROM EncyclopediaWHERE count_marks(mark_subtexts(biblio,'<citation>#')) > 1AND 1 =(SELECT count(DISTINCT author)FROM extract_subtexts(biblio,2,'<author>#') biblio(whole,author))Find titles of articles and titles of associated works mentioned in the bibliography andmerge the results.SELECT UNNEST aid, 'Title', extract_subtexts(article,2,'<title>#')FROM EncyclopediaUNIONSELECT UNNEST aid, `Work', extract_subtexts(biblio,2,'<work>#')FROM EncyclopediaFind every citation in the bibliography that cites any author of the article. Show authorscited. 17

www.manaraa.com

SELECT aid, author, citationFROM (SELECT UNNESTaid,extract_subtexts(article,2,'<author>#'),extract_subtexts(biblio,3,'<citation>#..<author>#')FROM Encyclopedia) E(aid,article,author,biblio,citation,cited)WHERE text_to_string(cited,'clear') = text_to_string(author,'clear')Find every citation which cites the article's author and title.SELECT aid, citeFROM (SELECT UNNEST aid,extract_subtexts(article,3,'%[<title>#,<author>#]'),extract_subtexts(biblio,3,'<citation>#.<author>#'),extract_subtexts(biblio,3,'<citation>#..<work>#')FROM Encyclopedia) E(aid,article,title,author,biblio,cite,cited_author,biblio2,cite2,work)WHERE text_to_string(author,'clear') = text_to_string(cited_author,'clear')AND text_to_string(title,'clear') = text_to_string(work,'clear')AND mark_subtexts(cite,'%') = mark_subtexts(cite2,'%')The use of clear text in the above example is necessary, since comparisons for equality onTEXT will fail when the compared texts have di�erent grammars. Similarly if mark subtexts hadnot been used, citations would not have compared equal since the two uses of extract subtextsproduce TEXT values with di�erent marks.List all element names actually used within articles.SELECT DISTINCT text_to_string(element,'root')FROM (SELECT UNNEST extract_subtexts(article,2,'<%>#')FROM Encyclopedia) E(article,element)List all element names which are used under summaries within articles.SELECT DISTINCT text_to_string(element,'root')FROM (SELECT UNNEST extract_subtexts(article,2,'<summary>..<%>#')FROM Encyclopedia) E(article,element)Mark all element names containing subordinate elements under summaries of articles.SELECT mark_subtexts(article,'<summary>..<%>#..<%>')FROM Encyclopedia 18

www.manaraa.com

Mark all elements whose parent has an attribute named status with value \Obs."SELECT mark_subtexts(article,'<%>[^:status.=Obs\.,^<%>#]')FROM EncyclopediaAdditional examples showing how the proposed DML might address Paula Angerstein's SGMLchallenge queries [SGM92] are provided in the Appendix.6 Conclusions and Further WorkWe have developed a single model within which both text and relational data can be describedso that users can access and manipulate all their data meaningfully. Our proposed extensions toSQL are modest, yet they are powerful enough to handle SGML-based data simply, to supportextractions from highly structured text into relations, and to preserve the integrity of complex textunits. We have designed a data description language and a query language integrating SQL withtext search and text manipulation features, addressing the following questions:� How can an SGML-de�ned description of text be integrated with SQL's DDL?� Which text manipulation operators should be included in an extended SQL DML?� How can text be selectively decomposed into relations?We have designed an architecture to support integrated text-and-relational databases using afederated database system. We have begun to implement and test the architecture and language,supporting data stored partially in an Oracle relational database, partially under the control of aDB2/6000 relational database, partially under the control of the PAT text engine [OTC95], andpartially under the control of Fulcrum's Search Server text engine [Ful94]. We expect to testall three text interfaces (SGML, regions, and
at-text), and expect that our experience will betransferrable to other engines with various capabilities.We have not yet adequately addressed the following issues:� How should disjunction be handled when searching for patterns within text?� Can the SFQL CONTAINS predicate be extended to induce marks within text?� What additional TEXT to STRING functions are required?� What is contained within an internal GRAMMAR and how is this information encoded?� How can TEXT and GRAMMAR be stored on underlying engines?� How can structured TEXT best be transferred across external interfaces?� How can the TEXT and GRAMMAR data types be updated?19

www.manaraa.com

� How can primary and foreign keys constraints be de�ned and enforced, when keys are embeddedwithin text?� How can costs useful to query optimizers be estimated prior to retrieving TEXT, and GRAM-MARs?� What extensions to SQL's information schema are needed to support TEXT?� How can the proposed extensions be de�ned using the emerging SQL3 standard?References[SGM92] P. Angerstein, Texcel \SGML Sample Queries", unpublished, 28 October 1992.[ATA91] ATA 89-9C SFQL Committee, \Advanced Retrieval Standard |SFQL: Structured Full-text Query Language," ATA speci�cation 100, Rev 30, Version 2.2, Prerelease C, AirTransport Association, ATA 89-9C.SFQL V2.2/PR-C (October 1991) 84 pp.[Bil92] A. Biliris, \The Performance of Three Database Storage Structures for Managing LargeObjects," Proc. Sigmod 92, ACM, Sigmod Record, Vol. 21, No. 2 (June 1992) 276{285.[Chr94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl, \From Structured Documentsto Novel Query Facilities," Proc. Sigmod 94, ACM, Sigmod Record, Vol. 23, No. 2 (June1994) 313{324.[Ful94] Fulcrum SearchServer Version 2.0 Introduction to SearchServer, June 30, 1994.[Gol90] C. F. Goldfarb. The SGML Handbook. Oxford University Press, Oxford, 1990.[Gon87] G. H. Gonnet and F. W. Tompa, \Mind Your Grammar: a New Approach to ModellingText," Very Large Data Bases (VLDB), Vol. 13 (September 1987) pp. 339{346.[ISO86] International Organization for Standardization, International Standard 8879: Informa-tion Processing | Text and O�ce Systems | Standard Generalized Markup Language(SGML), �rst edition | 1986-10-15(Ref. No. ISO 8879-1986(E)), 155 pp.[ISO90] International Organization for Standardization, \Information technology { Database Lan-guage SQL 2 Draft Report", ISO Committee ISO/IEC JTC 1/SC 21, 1990.[ISO92] International Standard, \Information technology { Database Languages { SQL, ISOCommittee ISO/IEC 9075, 1992.[ISO94] International Organization for Standardization, ISO/IEC JTC1/SC21 Information Re-trieval, Transfer and Management for OSI WG3 Database: ISO/IEC SC21/WG3 N1679SQL/MM SOU-004 ISO Working Draft SQL Multimedia and Application Packages(SQL/MM) - Part 2: Full-Text, March 1994.20

www.manaraa.com

[Mar91] C. C. Marshall, F. G. Halasz, R. A. Rogers, and W. C. Janssen Jr., \Aquanet: a Hy-pertext Tool to Hold Your Knowledge in Place," Proc. 3rd ACM Conf. on Hypertext:Hypertext 91, San Antonio (Dec. 1991) 261{275.[Mac92] I.A. Macleod, Data Modelling Requirements for Document in INFORMATION SYS-TEMS CONCEPTS: Improving the Understanding, North-Holland, also the Proceedingsof the IFIP TC8/WG8.1 Conference, pp.259-272, Alexandria, 1992.[Mic92] Microsoft Corporation, Microsoft ODBC Application Programmer's Guide, MicrosoftCorporation, 1992.[Ora92] Oracle Corporation, SQL*TextRetrieval Version 2 Technical Overview, Oracle Corpora-tion, 1992. 45 pp.Multimedia and Application Packages (SQL/MM) - Part 2: Full-Text, March 1994[OTC95] Open Text Corporation, \Pat Reference Manual", Open Text 5 System IntegrationGuide and Database Administration Guide, Release 5.0, 1995.[Sac92] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom, , and J. Zobel, \Atlas: a nestedrelational database system for text applications", Technical Report CITRI/TR-92-52,Collaborative Information Technology Research, Victoria, Australia, July 1992.[Sey92] Seybold Publications, \IDI Pursues Document Management," Report on PublishingSystems, Vol. 21, No. 16, May 1992.[Wei85] E.S.C. Weiner. \The New OED: Problems in the Computerization of a Dictionary,"University Computing, Vol. 7 (1985) 66-71.AcknowledgementsThis work has been carried out as part of the University's ongoing participation in the CanadianStrategic Software Consortium (CSSC). The CSSC was formed in 1993 to perform pre-competitiveresearch on the integration of relational and text databases and is partially supported by IndustryCanada's Strategic Technologies Program (STP). CSSC members include: Fulcrum TechnologiesInc., Grafnetix Systems Inc., InContext Corporation, Megalith Technologies Inc., Open Text Cor-poration, Public Sector Systems Ltd., Softquad Inc. and the University of Waterloo.Ideas expressed in this paper have been developed and re�ned in part through discussions withTim Bray, Gordon Cormack, Gaston Gonnet, and members of the CSSC's Hybrid Query Processor(HQP) working group. Financial assistance was provided by the University of Waterloo and throughgrants from the Natural Sciences and Engineering Research Council of Canada, Industry Canada,and Open Text Corporation. 21

www.manaraa.com

APPENDIXSGML Sample QueriesThis appendix demonstrates how the proposed DML might be used to answer a diverse set ofsample queries. These sample queries are taken verbatim from the SGML Sample Queries [SGM92].Section B reproduces the supporting material from that same source.1 Sample SolutionsIn the examples that follow we assume that the sample text being examined resides in a columnnamed report of type TEXT, within a table named T containing one row.1. Locate all paragraphs in the report (all elements whose GI is \para" anywhere within the\report" element)SELECT mark_subtexts(report,'<para>#')FROM T2. Locate all paragraph elements in an introduction (all \para" elements directly contained withinan \intro" element)SELECT mark_subtexts(report, '<intro>.<para>#')FROM T3. Locate all paragraphs in the introduction of a section that is in a chapter that has no introduction(all \para" elements directly contained within an \intro" element directly contained in a \section"element directly contained in a \chapter" element. The \chapter" element must not directly containan \intro" element.)SELECT mark_subtexts(mark_except(mark_subtexts(report, '<chapter>#'),mark_subtexts(report, '<chapter>#.<intro>')),'@<chapter>..<section>..<intro>..<para>#')FROM T4. Locate the second paragraph in the third section in the second chapter (the second \para" elementoccurring in the third \section" element occurring in the second \chapter" element occurring in\report")SELECT keep_marks(mark_subtexts(keep_marks(mark_subtexts(keep_marks(22

www.manaraa.com

mark_subtexts(report,'<chapter>#'),2),'@%..<section>#'),3),'@%..<para>#'),2)FROM T5. Locate all classi�ed paragraphs (all \para" elements whose \security" attribute has the value\c")SELECT mark_subtexts(report,'<para>#.:security.=c')FROM T6. Locate the short titles of all sections (the value of the \shorttitle" attribute of all \section"elements)SELECT mark_subtexts(report,'<section>.:shorttitle.=%#')FROM T7. Locate the initial letter of the initial paragraph of all introductions (the �rst character in thecontent [character content as well as element content] of the �rst \para" element contained in a\intro" element)SELECT text_to_string(mark_except(mark_subtexts(report,'<intro>[<para>#]'),mark_subtexts(report,'<intro>[<para>,<para>#]')),'highlight_first_char')FROM T8a. Locate all sections with a title that has \is SGML" in it (all \section" elements that contain a\title" element that has the consecutive characters \is SGML" in its content). The string can beinterrupted by sub-elementsSELECT aggregate_marks(marked_report)FROM (SELECT UNNEST extract_subtexts(report,2,'<section>#..<title>')FROM T) T(marked_report,section)WHERE EXISTS(SELECT NULLFROM extract_subtexts(T.section,2,'<title>#') T1(section,title)WHERE text_to_string(title,'clear') LIKE '%is SGML%') 23

www.manaraa.com

8b. Locate all sections with a title that has \is SGML" in it (all \section" elements that contain a\title" element that has the consecutive characters \is SGML" in its content). The string cannotbe interrupted by sub-elementsSELECT mark_subtexts(report, '<section>#..<title>.."%is SGML%"')FROM T9a. Locate all occurrences of \mark" followed by \up" in the report, where 0 to 10 characters,line starts, or line ends can occur between \mark" and \up". The string can be interrupted bysub-elementsThe CONTAINS predicate is the natural way to formulate a solution to this query. It remainsto be decided if the CONTAINS predicate may be applied to TEXT, and how (if it were capableof being applied to TEXT) this text might be suitably marked.9b. Locate all occurrences of \mark" followed by \up" in the report, where 0 to 10 characters,line starts, or line ends can occur between \mark" and \up". The string cannot be interrupted bysub-elements.The observations made in 9a also apply here. However, since the match is to be made against thevalue of a single node, this query might also potentially be resolved by providing an alternative stringpattern matching language which allowed detection of the desired strings within a mark subtexts()function.10. Locate all the topics referenced by a cross-reference anywhere in the report (all the \topic"elements whose \topicid" attribute value is the same as an \xre�d" attribute value of any \xref"element)SELECT aggregate_marks(marked_topic)FROM (SELECT UNNESTreport,extract_subtexts(report,3,'<topic>#.:topicid.=%#')FROM T) T(report,marked_topic,topic,id)WHERE text_to_string(id,'clear') IN(SELECT text_to_string(xrefid,'clear')FROM extract_subtexts(report,2,'<xref>.:xrefid.=%#')AS E(marked_xrefid,xrefid))GROUP BY report11. Locate all CGM graphic elements (all \graphic" elements whose \graphname" attribute identi�esan external entity whose notation is \cgm")SELECT mark_subtexts(report,'<graphic>#.:graphname.=%.!cgm')FROM TWe assume in this example that the text encoding has been extended by allowing (whereappropriate) the notation associated with an attribute value to be encoded beneath this attributevalue. Within the extended encoding notation is identi�ed by an initial `!'.12. Locate all entity references to CGM graphics (all entity references to external entities whosenotation is \cgm" [not including graphic elements])24

www.manaraa.com

SELECT mark_subtexts(report,'&%#..!cgm')FROM TWe assume in this example that the text encoding has been extended to allow entity referencesto be encoded, and that such entity references are identi�ed (within the encoding) by an initial `&'.The notation (if any) associated with an external entity reference is assumed to appear somewherebeneath this entity reference.13. Locate the closest title preceding a given cross-reference (the \title" element that would be\touched" last before the \xref" element when touching each element in document order)SELECT keep_marks(earlier_titles, count_marks(earlier_titles))FROM (SELECT mark_subtexts(marked_xref,'%[<title>#,@%]') as earlier_titlesFROM marked_text)In the above example we assume that marked text is a view. The column marked xref contains anappropriate instance of text in which only the given cross reference is marked.2 Sample Data1 <!DOCTYPE report [23 <!NOTATION cgm PUBLIC "Computer Graphics Metafile">4 <!NOTATION ccitt PUBLIC "CCITT group 4 raster">56 <!ENTITY % text "(#PCDATA | emph)*">7 <!ENTITY infoflow NDATA ccitt>8 <!ENTITY tagexamp NDATA cgm>9 <!ENTITY gcalogo NDATA cgm>101112 <!ELEMENT report - o (title, chapter+)>13 <!ELEMENT title - o (%text;)>14 <!ELEMENT chapter - o (title, intro?, section*)>15 <!ATTLIST chapter16 shorttitle CDATA #IMPLIED>17 <!ELEMENT intro - o (para | graphic)+>18 <!ELEMENT section - o (title, intro?, topic*)>19 <!ATTLIST section20 shorttitle CDATA #IMPLIED21 sectid ID #IMPLIED>22 <!ELEMENT topic - o (title, (para | graphic)+)>23 <!ATTLIST topic24 shorttitle CDATA #IMPLIED 25

www.manaraa.com

25 topicid ID #IMPLIED>26 <!ELEMENT para - o (%text; | xref)*>27 <!ATTLIST para28 security (u | c | s | ts) "u">29 <!ELEMENT emph (%text;)30 <!ELEMENT graphic EMPTY>31 <!ATTLIST graphic32 graphname ENTITY #REQUIRED>33 <!ELEMENT xref - o EMPTY>34 <!ATTLIST xref35 xrefid IDREF #IMPLIED>361 <report>2 <title>Getting started with SGML3 <chapter>4 <title>The business challenge5 <intro>6 <para>With the ever-changing and growing global market, companies and7 large organizations are searching for ways to become more viable and8 competitive. Downsizing and other cost-cutting measures demand more9 efficient use of corporate resources. One very important resource is10 an organization's information.11 <para>As part of the move toward integrated information management,12 whole industries are developing and implementing standards for13 exchanging technical information. This report describes how one such14 standard, the Standard Generalized Markup Language (SGML), works as15 part of an overall information management strategy.16 <graphic graphname=infoflow>17 <chapter>18 <title>Getting to know SGML19 <intro>20 <para>While SGML is a fairly recent technology, the use of21 <emph>markup</emph> in computer-generated documents has existed for a22 while.23 <section shorttitle = "What is markup?">24 <title>What is markup, or everything you always wanted to know about25 document preparation but were afraid to ask?26 <intro>27 <para>Markup is everything in a document that is not content. The28 traditional meaning of markup is the manual <emph>marking</emph> up29 of typewritten text to give instructions for a typesetter or30 compositor about how to fit the text on a page and what typefaces to31 use. This kind of markup is known as <emph>procedural markup</emph>.26

www.manaraa.com

32 <topic topicid=top1>33 <title>Procedural markup34 <para>Most electronic publishing systems today use some form of35 procedural markup. Procedural markup codes are good for one36 presentation of the information.37 <topic topicid=top2>38 <title>Generic markup39 <para>Generic markup (also known as descriptive markup) describes the40 <emph>purpose</emph> of the text in a document. A basic concept of41 generic markup is that the content of a document must be separate from42 the style. Generic markup allows for multiple presentations of the43 information.44 <topic topicid=top3>45 <title>Drawbacks of procedural markup46 <para>Industries involved in technical documentation increasingly47 prefer generic over procedural markup schemes. When a company changes48 software or hardware systems, enormous data translation tasks arise,49 often resulting in errors.50 <section shorttitle = "What is SGML?">51 <title>What <emph>is</emph> SGML in the grand scheme of the universe, anyway?52 <intro>53 <para>SGML defines a strict markup scheme with a syntax for defining54 document data elements and an overall framework for marking up55 documents.56 <para>SGML can describe and create documents that are not dependent on57 any hardware, software, formatter, or operating system. Since SGML58 documents conform to an international standard, they are portable.59 <section shorttitle = "How does SGML work?">60 <title>How is SGML and would you recommend it to your grandmother?61 <intro>62 <para>You can break a typical document into three layers: structure,63 content, and style. SGML works by separating these three aspects and64 deals mainly with the relationship between structure and content.65 <topic topicid=top4>66 <title>Structure67 <para>At the heart of an SGML application is a file called the DTD, or68 Document Type Definition. The DTD sets up the structure of a document,69 much like a database schema describes the types of information it70 handles.71 <para>A database schema also defines the relationships between the72 various types of data. Similarly, a DTD specifies <emph>rules</emph>73 to help ensure documents have a consistent, logical structure.74 <topic topicid=top5> 27

www.manaraa.com

75 <title>Content76 <para>Content is the information itself. The method for identifying77 the information and its meaning within this framework is called78 <emph>tagging</emph>. Tagging must79 conform to the rules established in the DTD (see <xref xrefid=top4>).80 <graphic graphname=tagexamp>81 <topic topicid=top6>82 <title>Style83 <para>SGML does not standardize style or other processing methods for84 information stored in SGML.85 <chapter>86 <title>Resources87 <section>88 <title>Conferences, tutorials, and training89 <intro>90 <para>The Graphic Communications Association (&gcalogo;) has been91 instrumental in the development of SGML. GCA provides conferences,92 tutorials, newsletters, and publication sales for both members and93 non-members.94 <para security = c>Exiled members of the former Soviet Union's secret95 police, the KGB, have infiltrated the upper ranks of the GCA and are96 planning the Final Revolution as soon as DSSSL is completed.97Desired Results:1. Elements whose start-tag is on 6, 11, 20, 27, 34, 39, 46, 53, 56, 62, 67, 71, 76, 83, 90, 942. Elements whose start-tag is on 6, 11, 20, 27, 53, 56, 62, 90, 943. Elements whose start-tag is on 90, 944. Element whose start-tag is on 675. Element whose start-tag is on 946. Attribute value in start-tag on 23, 50, 597. Character after start-tag on 6, 20, 27, 53, 62, 908a. Elements whose start-tag is on 51, 608b. Element whose start-tag is on 609a. String on 21, 23, 24, 28(2), 31(2), 33, 35(2), 38, 39(2), 41, 42, 45, 47, 53, 549b. String on 21, 23, 24, 28, 31(2), 33, 35(2), 38, 39(2), 41, 42, 45, 47, 53, 5410. Element whose start-tag is on 6511. Element whose start-tag is on 8012. Entity reference on 9013. Given xref on line 79, element whose start-tag is on 7528

